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Abstract 

Aging is the sum of the deleterious changes that occur as time goes by. It is the main risk 

factor for the development of cardiovascular disease, and aging of the vasculature is the event 

that most often impacts on the health of elderly people. The “free-radical theory of aging” 

was proposed to explain aging as a consequence of the accumulation of reactive oxygen 

species (ROS). However, recent findings contradict this theory, and it now seems that 

mechanisms mediating longevity act through induction of oxidative stress. In fact, calorie 

restriction − a powerful way of delaying aging − increases ROS accumulation due to 

stimulation of the basal metabolic rate; moreover, reports show that antioxidant therapy is 

detrimental to healthy aging. We also now know that genetic manipulation of the insulin-like-

growth-factor-1/insulin signal (IIS) has a profound impact on the rate of aging and that the 

IIS is modulated by calorie restriction and physical exercise. The IIS regulates activation of 

nitric oxide synthase (eNOS), the activity of which is essential to improving lifespan through 

calorie restriction, as demonstrated by experiments on eNOS knockout mice. Indeed, eNOS 

has a key role in maintaining vascular integrity during aging by activating vasorelaxation and 

allowing migration and angiogenesis. In this review, we will overview current literature on 

these topics and we will try to convince the reader of the importance of vascular integrity and 

nitric oxide production in determining healthy aging. 
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Introduction 

Max Rubner’s “rate of living” theory [1] combined mass-specific resting metabolic rate and 

maximum lifespan of mammalian species to calculate the “lifetime energy potential”: it holds 

that the pace of life is inversely related to the length of life. Raymond Pearl [2] used this 

concept to explain longevity variation within species and gave it the “rate of living” label. 

The subsequent “free-radical theory of aging” (FRTA) was formulated from the above 

concepts: Harman [3] postulated that accumulation of free radicals was the prime cause of the 

sequential alterations characterizing advancing age and the progressive increase in disease 

and death rates [4]. 

With the introduction of a “lipids” perspective to the FRTA, it was then asserted that the level 

of peroxidizability of the cell membrane bilayer was a critical determinant of the severity of 

cell damage caused by free radicals: in response to attack by free radicals, peroxidation − the 

susceptibility to which is dictated by the number of single-bonded carbon atoms between the 

–C═C– units of the fatty acyl chain − generates a strong self-propagating reaction that causes 

damage to other molecules [5]. 

The “membrane pacemaker” theory of aging incorporates these concepts to hold that high 

membrane fluidity and low membrane peroxidizability are the optimal membrane conditions 

for promoting longevity. This theory arose from the observation that body mass/maximum 

lifespan in mammals and birds correlates respectively directly and inversely with the levels of 

C18:1n-9 and C22:6n-3 fatty acids in cellular membranes. This can be explained by the fact 

that C22:6n-3 is 320-fold more susceptible than C18:1n-9 to peroxidation, while the latter 

fatty acid has fluidity properties as good as the former [6]. 

Lipids, eNOS and exceptional longevity 

Exceptional longevity in humans is a complex trait. Long-living individuals have delayed 

aging and a low incidence of cardiovascular disease [7,8]. We recently reported that in 

children of nonagenarians the peroxidation index of erythrocyte membrane lipids was 

significantly lower than in a group of matched controls [9]. It is of particular interest that we 

found significantly increased levels of palmitoleic acid (C16:1n-7) in the nonagenarians’ 

offspring, similarly to what was later observed in genetically modified long-living worms 

[10]. Because these worms were genetically modified in homologue genes of the insulin-like 

growth factor 1 (IGF1)/forkhead box O3 (FOXO3A) axis, a possible explanation for this 

finding is that IGF-1 signalling modulates, or is modulated by, the membrane fatty-acid 

composition [11]. Moreover, it was reported that after chronic thermal or saline stress of 

yeast, the induced increase in the level of membrane palmitoleic acid was responsible for a 

reset of heat shock protein (Hsp) release to higher levels [12]. Thus, the high C16:1n-7 

detected in the offspring of nonagenarians could be correlated to the low serum level of 

Hsp70 detected in centenarians’ offspring [13]. 



In apparent contrast with the FRTA is the finding that the cell membranes of offspring of 

nonagenarians as well as of long-living DAF2 Caenorhabditis elegans mutants have an 

accumulated amount of endogenous trans fatty acids [9 and unpublished data]. Endogenous 

trans fatty acids are an index of endogenous free-radical cellular stress and are produced by 

endothelial nitric oxide synthase (eNOS)-generated nitrates (NO2·), as shown by the lack of 

trans-arachidonic acids in the retinas of eNOS
−/−

 mice [14]. Moreover, calorie restriction has 

been shown to increase longevity in organisms ranging from yeasts to mammals; it induces 

the expression of eNOS and mitochondrial biogenesis , which in turn increases oxygen 

consumption. These effects were abolished in eNOS
−/−

 mice [15]. We therefore speculated 

that eNOS, nitrate radical stress and the trans fatty-acid accumulation observed in 

nonagenarians’ offspring are all interconnected in the delayed-aging action of calorie 

restriction, in apparent contrast with the FRTA [16]. The trans fatty acids could serve as 

molecular signals that ultimately induce endogenous defence mechanisms culminating in 

increased stress resistance and longevity, an adaptive response named hormesis [17]. 

In agreement with this hypothesis, deletion in worms of mitochondrial proteins such as ISP-1 

and NUO-6 induces the oxidative stress necessary and sufficient for promoting longevity: in 

fact, this effect is abolished by antioxidants and is induced by mild treatment with oxidants 

[18]. Taken together, these findings question Harman's FRTA and suggest, rather, that 

reactive oxygen species (ROS) act as essential signalling molecules promoting metabolic 

health and longevity through an eNOS/nitrate/trans fatty acids axis [19]. The degree of 

oxidative stress could possibly explain this apparent paradox: low stress being protective, 

whereas massive stress becomes deleterious. 

Calorie restriction, exercise, genetic makeup and eNOS 

The beneficial effects of calorie restriction are multiple: it reduces the incidence of tumours 

and diabetes and the age-related decline in T-lymphocyte proliferation [20]. The effects of 

calorie restriction can be explained by increased IGF1-insulin signal (IIS) efficiency: in fact, 

findings on patients with growth hormone receptor deficiency suggest that their high insulin 

sensitivity could account for the absence of diabetes and very low incidence of cancer seen in 

these individuals [21]. 

Furthermore, calorie restriction can be mimicked by genetic manipulation aimed at blocking 

IIS (i.e., the IGF1/PI3K/AKT/FOXO3A axis): for example, the FIRKO mouse − a carrier of a 

fat-specific insulin receptor knockout − and C. elegans models carrying null mutations of daf-

2 − an IGF1 homologue − and age-1 − a homologue of the catalytic subunit of mammalian 

PI3K− all live longer than wild-type animals [22,23]. To be noted, the beneficial effects of 

daf-2 and age-1 null mutations are antagonized by null mutation of daf-16, which encodes 

three members of the FOXO family of transcription factors [23]. Thus, via AKT the IIS is 

important for controlling eNOS and, hence, human longevity [24]. 

Genetic variants that are either protective or deleterious for human health can be identified by 

studying the genetic pool of centenarians: the so called “positive biology approach” [25,26]. 

Interestingly, apolipoprotein E (APOE) − a variant of which is associated with exceptional 

longevity in humans across populations − controls the IIS pathway by influencing PI3K [27]. 

Similarly, the presence of genetic variants of FOXO3A − another member of the IIS − is 

highly replicable in long-living populations [28-30]. 



Exercise is inversely correlated with total mortality [31]. An elegant report on athletes 

undergoing marathon training identified a combination of metabolites (i.e., glycerol, 

niacinamide, glucose-6-phosphate, pantothenate and succinate) that increased in the plasma 

in response to exercise; in vitro, these metabolites were able to up-regulate the expression of 

NUR77, a transcriptional regulator of glucose utilization and lipid metabolism genes [32]. 

NUR77 is under the control of Ca
2+

/calmodulin-dependent protein kinase (CAMKIV), which 

is activated by AMPK and has been associated with human exceptional longevity [33,34]. 

Furthermore, AMPK controls eNOS phosphorylation, which explains the potentiation of 

eNOS activity by both calorie restriction and physical exercise [24]. AMPK is activated 

acutely at exercise intensities above ≈ 60% of maximal aerobic capacity [35]. Calorie 

restriction and exercise both activate mitochondrial biogenesis through activation of AMPK 

with an eNOS-dependent mechanism, as shown by experiments on eNOS knockout mice 

[36]. Thus, the beneficial effects on longevity of calorie restriction, genetic makeup and 

exercise can be explained, at least in part, through eNOS-dependent activation of 

mitochondrial biogenesis. 

Vascular endothelial dysfunction and eNOS in aging 

Endothelial dysfunction is the hallmark of vascular damage in advancing age [37-41]. Many 

functions of the vascular endothelium are modulated by NO, which is able to induce smooth 

muscle relaxation [42-44], the inhibition of platelet aggregation [45], leukocyte adhesion to 

endothelial cells [46,47] and preservation of endothelial progenitor cell function [48] (Figure 

1a). The crucial role of NO in protecting the cardiovascular system during aging was revealed 

by studies demonstrating that eNOS knockout mice have a premature cardiac-aging 

phenotype and early mortality [49]. 

Figure 1 a) Representative nitric oxide pathway. b) Effects of aging on nitric oxide 

pathway. BH4 = tetrahydrobiopterin; Ca
2+

 = calcium ion; cGMP = cyclic guanosine 

monophosphate; eNOS = endothelial nitric oxide synthase; GTP = guanosine triphosphate; 

NADPH = nicotinamide adenine dinucleotide phosphate; NO = nitric oxide; ONOO
-
 = 

Peroxynitrite; ADMA = Dimethylarginine; ROS = reactive oxygen species 

Reduction of NO availability alters vascular homeostasis [50] and is a phenomenon involved 

in the development of hypertension [50,51], atherosclerosis and thrombosis leading to heart 

attack and stroke [52-54]. The mechanisms underlying vascular aging are complex and 

involve multiple pathways [41,55,56] (Figure 1b). During aging, there is a progressive 

misbalance between NO production − which becomes increasingly reduced − and oxidative 

stress − which increases without a compensatory enhancement of antioxidant defences [57-

59]. As a result, aged vessels have a compromised vasodilatory function, which induces 

increased vascular resistance and impaired perfusion [60]. Reduced NO production may be 

dependent upon several mechanisms, including: a) deficiency in eNOS substrates and 

cofactors, such as l-arginine [61] and tetrahydrobiopterin (BH4) [62]; b) the presence of 

endogenous eNOS inhibitors, such as asymmetric dimethylarginine (ADMA) [63,64] and 

analogues of l-arginine present in plasma and various tissues, which have been described as 

cardiovascular risk factors [65]; and c) lower expression and/or activity of eNOS due to 

abnormalities in eNOS trafficking to caveolae, to altered eNOS phosphorylation status or to 

uncoupling of eNOS activity [39,66,67]. 

An important molecule regulating eNOS activity is sirtuin 1 (Sirt-1), a longevity factor that 

modulates cellular senescence [68] and promotes endothelium-dependent vasodilation by 



targeting eNOS for deacetylation [69]. Sirt-1 expression was found lower in endothelial cells 

from older adults than healthy younger individuals [66,70] in which endothelial 

vasorelaxation was demonstrated to be positively related to Sirt-1 expression. Calorie 

restriction − which improves health and slows the aging process − has been reported to 

induce eNOS expression, improve mitochondrial biogenesis and increase Sirt-1 expression; 

thus, a positive feedback loop links Sirt-1 and eNOS [71], and activation of SIRT1 may help 

to reset the activity of eNOS during situations of endothelial dysfunction where NO 

availability is limited. 

BH4 is an essential cofactor for NO synthesis by eNOS. When it is limited − because of a 

decrease in biosynthesis or an increase in its oxidation − eNOS becomes uncoupled and 

induces release of superoxide, which, in turn, leads to degradation of NO. Administration of 

BH4 to older adults caused a selective improvement in endothelial vasorelaxation, 

demonstrating that BH4 potentially leads to eNOS recoupling in aged human vasculature 

[72]. 

Another mechanism that reduces NO bioavailability, hence contributing to vascular 

endothelial dysfunction with aging, is oxidative stress [73]. Oxidative stress is induced 

mainly by uncoupling of eNOS, upregulation of the oxidant enzyme nicotinamide adenine 

dinucleotide phosphate-oxidase (NADPH oxidase) [50,74,75] or increased mitochondrial 

production of ROS [76-79]. Increased expression of NADPH oxidase has been reported in 

vessels from aged humans not presenting with other cardiovascular risk factors. The use of 

NADPH inhibitors protects from age-related endothelial dysfunction [80]. 

Finally, a reduction in the number of mitochondria and an increase in the generation of 

dysfunctional proteins have been linked to aging through increased oxidative stress and 

mitochondrial DNA damage [81]. The mechanisms of mitochondrial oxidative stress in aged 

endothelial cells include also inhibition of antioxidant defence enzymes, such as manganese 

superoxide dismutase (MnSOD) [82], decline in reduced glutathione content [83] and 

dysfunction of the electron transport chain [84]. The mitochondrial enzyme p66shc seems to 

play an important role in regulation of oxidative stress induction, since mice lacking p66hc 

present with reduced ROS production, improved endothelial function and increased lifespan 

[85]. However, conflicting findings exist on the effects of antioxidants on vascular function 

in elderly humans. For example, a study on vitamin E reported that its administration does 

not reduce endothelial dysfunction in older adults [86]. In contrast, a more recent clinical trial 

demonstrated acute reversal of endothelial dysfunction in elderly patients after oral 

administration of an antioxidant cocktail [87]. 

Conclusions 

The NO pathway and endothelial dysfunction are part of the principal mechanisms involved 

in the vascular aging process. A better understanding of the complex interactions between 

them represents an important target for future research. Therapeutic strategies designed to 

improve endothelial function or provide an alternative source of NO should be primary aims 

in the drive to reduce the incidence of cardiovascular disease in the elderly. Moreover, studies 

need to better investigate the effects of antioxidant therapy on endothelial dysfunction in 

aging. 
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